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ABSTRACT 

This study forms part of a larger study to develop a MEMS scale turbomachinery based 

vacuum pump.  This would allow very high vacuum to be drawn for handheld mass 

spectroscopy.  This thesis concentrates on the roughing portion of the turbo pump where 

flow can still be treated as a continuum but the no slip boundary condition is not accurate.  

The first portion of this thesis investigates flow at Knudsen numbers ranging from 0.001 

to 0.1.  By using a first order analysis, the wall shear stress can be specified in a 

commercial computational fluid dynamics code allowing slip flow to occur.  This method 

was validated against a basic Poiseuille flow at these higher Knudsen numbers where slip 

flow was present.  This demonstrated that it was possible to use a commercial code to 

model Knudsen number  flows between 0.001 to 0.1.  The second part of the thesis 

focused on the design of a roughing pump stage consisting of three blade rows:  a 

stationary inlet and outlet surrounding the rotor blade row.  The no slip condition was not 

imposed as the simulated stage was assumed to be the outlet stage, and thus operating at a 

very low Knudsen number.  A two dimensional analysis was developed to define the 

initial blade shape to achieve a maximum pressure ratio.  A three dimensional simulation 

was developed to investigate the effects of tip leakage losses.  The simulations are able to 

predict pressure ratio and power consumption of a particular stage of a MEMS scale 

turbopump.  The final predicted pressure ratio of a stage with tip clearance is 1.0722 with 

power consumption of 0.4648 watts.  
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I. INTRODUCTION 

An increasing demand in both the private and military sectors for small machinery 

carries with it a necessity to further understand the engineering fundamentals behind 

these micro devices.  However, as the field of material science advances with the use of 

photolithography for microfabrication, machinery is continually able to decrease in size.  

The smaller turbomachinery demands a further understanding of the physical 

fundamentals of small scale flows.  The microchannel is a key component of micro-

electro-mechanical-systems (MEMS) as they are the used to transport fluid in such 

systems.   

It has been known for quite some time that the basic engineering assumptions 

which were previously accepted at the macro scale are no longer valid at the micro scale.  

This history of flows in microchannels can be traced back as early as Knudsen in 1909 

[5]. It recently reappeared on the agenda of fluid researches in the early 1990s with work 

by Pfahler and Beskok. [9]    

The field of fluid mechanics primary exists in the continuum regime where the 

Navier-Stokes, conservation of mass and conservation of energy can be solved 

simultaneously to analyze the flow in a macro-scale computational model.  At extremely 

low vacuums and very small geometries the flows can be treated on a molecular level and 

solved through the use of the Boltzmann Equations. At slightly higher pressures and 

larger geometries the flow can be treated as a continuum but the no-slip boundary 

condition no longer applies.  This is brought about by the kinetic theory of gas and the 

Boltzmann equation, the study of fluid on a micro and nano level must be approached 

differently.  Instead of the no slip assumption, the dilute gas assumption is made and 

applied to the Chapman-Enskog theory which allows for modeling of gases at smaller 

scales than normally acceptable with a classical Navier-Stokes approach.  [6]  

Experimentally, flow phenomena have been studied at these small geometries that 

are not seen at larger scales.  For instance, as measured by Pong, Ho & Liu in 1994 [8]  
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and by Arkilic, Schmidt & Breuer in 2001, the pressure distribution is not linear. [4]  The 

goal of this research is to computationally study the slip regime in an effort to apply it to 

the design of a micro-scale vacuum pump.   

A. SLIP FLOW BACKGROUND 

As mentioned, with most applications engineers have seen, the assumption that 

fluid is continuous can be made and this is the basis of continuum mechanics. Here, both 

the continuity, Navier-Stokes and energy equations are valid with the assumption of a no-

slip boundary condition.  This assumption allows for easy analytical solutions to basic 

cases of fluid flow such as Poiseuille and Couette flow.  Since the velocity gradient can 

be calculated from the known velocities at the wall, it became elementary to calculate 

shear stresses and drag forces.  As the pressure of a flow drops and the passage geometry 

decreases the wall velocity cannot be assumed to be zero. 

The non-dimensional number which describes this regime is the Knudsen number.  

This is defined as follows: 

 
Kn

L
λ

=
 (1) 

This ratio between the mean free path and the characteristic length can range from 

infinitesimally small to numbers greater than ten.  The no slip regime is assumed when 

this number is less than 0.001.   

In cases pertaining to the present study, the Knudsen Number ranges between 

0.001 and 0.1.  Here the flow can still be treated as a continuum but the no-slip 

assumption is no longer accurate.  The number is brought up by either decreasing the 

characteristic length or increasing the mean free path of the fluid by changing the 

pressure and/or the temperature.  The mean free path is: 

 
2

1.051
2

B

v

k T
p

λ
πσ

=  (2) 

In general, at standard atmospheric temperature and pressure, the mean free path 

is about 65-70 nm.  When the Knudsen number reaches the aforementioned higher order  
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of magnitudes, the assumption that the velocity of the wall is equal to the velocity of the 

fluid can no longer be made and this must then be taken into account when modeling 

such devices. 

It can be proven that based on the Maxwellian slip boundary condition the slip 

velocity as a function of the velocity gradient near the wall is [2]: 

 
2 v

wall
wallv

uu Kn y
σ

σ
− ∂= ∂  (3) 

Beyond this point, as the Knudsen number becomes increasingly larger, the flow 

enters the transition regime where its Knudsen number is between 0.1 and 10.  Here the 

Navier-Stokes equations are not valid as the flow ceases to behave  as a continuum and 

the Boltzmann equations must be used to solve this flow.  Here, each molecule is treated 

as a different element colliding with other molecules.  Taking the Knudsen number 

beyond 10, all molecular collisions are neglected in the Boltzmann equations because in 

this region, the mean free path is 10 times larger than the channel where the gas is 

traveling, thus most likely not colliding.  The scope of work studied in this paper is 

limited to Knudsen numbers between 0.001 and 0.1 placing the fluid in the slip and 

continuum regimes.   

The study begins with modified Poiseuille flow.  The aim of this was to 

investigate whether a commercial code could be modified to model slip flow. At these 

very small pressures, the mean free path of the flow will increase thereby increasing the 

Knudsen number and bringing the flow into the slip regime.  Per initial design, this 

centrifugal “chip pump” will operate at 200,000 revolutions per minute with 5um tip 

gaps.  The ultimate goal of this study is to apply this technique to a MEMS style vacuum 

pump, although the latter was not completed in this study.    

B. VACUUM PUMP BACKGROUND 

Vacuum pump technology has existed since the middle of the 20th
 century.  

Modern vacuum pumps operate in two parts.  A roughing pump performs the initial 

vacuum setup.  This component is what is being investigated in this study.   The name 

comes from the fact that the pump “roughs” the majority of the system and provides 
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some backing for the diffusion pump.  This is because the diffusion process cannot 

function while diffusing into atmospheric conditions.  These back-to-back compressors 

combined with a complex valve structure create the basis for a vacuum pump.  On a large 

scale, this is practical since the diffusion pump is designed to deal with extremely low 

pressure and the roughing pump is of a large magnitude.  In the case of the mass 

spectrometer, shown in Figure 1 below, the large roughing pump can be seen on the left 

hand side.  

 

Figure 1.   Mass Spectrometer (After: [1]) 

The difficulty of simulating such a device occurs when the roughing pump 

becomes very small as the flow enters the slip regime.  It is understood the suction side of 

the roughing pump will exhibit slip flow characteristics, and this is effective at a large 

scale with today's technology.  However, translating this to a MEMS scale that can 

operate at atmospheric conditions on one end and light vacuum conditions on the other 

drives the motivation to model and understand the slip flow. 

Mass Spectrometer 
Vacuum Pump 
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Figure 2.   Description of  a Basic Vacuum System (From: [10]) 

Figure 2 is a visual representation of how a typical vacuum pump works and is the 

basis for a MEMS scale pump.   

C. MASS SPECTROSCOPY BACKGROUND 

The ability to create miniature vacuum pumps has various applications, primarily 

in the capability of handheld mass spectroscopy.  A brief understanding of how these 

devices work will help to better appreciate the need to study slip flow at this very small 

scale.  Mass spectroscopy has countless battlefield applications from a military 

perspective in the detection of Chemical, Biological and Radiation (CBR) elements 

which can be used as weapons.  In today’s environment, this is only possible by 

collecting samples and bringing them to a lab where the mass spectrometers are located.  

Designing devices that can be carried by a human or unmanned vehicle, mitigates the 

time delay associated with CBR detection in the field and can transmit real-time data for 

analysis and operational decision making.   
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The concept of a mass spectrometer is that whichever substance is being studied 

must be separated into individual atoms.  For detecting particles in air, this must be 

accomplished by bringing ambient air condition air into a high vacuum.  This reason is 

the major setback for handheld mass spectrometers and therefore advances in the 

understanding of fluids at such vacuum pressures and high speeds are necessary.  The 

vacuum pressures are necessary to prevent the molecules from colliding with each other 

during the testing and analysis phase.   

 

Figure 3.   Mass Spectrometer diagram (From: [1]) 

It works by individual atoms being ionized by having electrons fired at them.  

These ions are then subject to various electric and magnetic fields.  The displacement of 

theses ions as they travel through the magnetic field can accurately provide details about 

the specific atom traveling through the machine.  As shown in Figure 3, in order for this 

test to work vacuum pressures must be maintained throughout the test section.  This 

allows for the ions being measured to not be affected by anything else except the 

magnetic field.  Typically, the vacuum drives the size of the entire system and by 

developing such types of MEMS turbopumps, handheld CBR detection through mass 

spectroscopy will be possible.   
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D. PROCEDURE 

The study begins with an analysis of slip flows using a basic Poiseuille analysis. 

A commercial code CFX was modified to include slip flow conditions. Following this 

transient two-dimensional and three-dimensional designs of a typical MEMS scale 

turbopump stage were simulated. In the time available it was not possible to include the 

no-slip conditions in these models.   
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II. SLIP FLOW VALIDATION 

A. SOLUTIONS TO SLIP FLOW EQUATIONS 

1. Shear Stress at the Wall 

It has been shown [6] that the general solution for the velocity at the wall can be 

estimated using Equation 4: 

 

2 v
gas wall

v wall

uu u Kn
y

σ
σ
− ∂

− =
∂

 (4) 

As the Knudsen number approaches zero, which is a safe assumption for most 

flows in the continuum regime, the velocity at the wall also approaches zero.  Using 

Newton's law of viscosity for the shear stress,  

 wall

u
y

τ µ ∂
=

∂
 (5) 

Equation 4 can be rearranged as: 

 

2
gas wall

v wall

v

u u u
yKnσ

σ

− ∂
=

− ∂

 (6) 

 to obtain an expression for the shear stress, τ, 

 

( )
2
gas wall

v

v

u u

Kn

µ
τ σ

σ

−
=

−

 (7)

 

This is an important step in developing an appropriate equation for the shear 

stress at the wall.  The assumption of a very rough wall, or σv=1 is a good approximation 

for micro-channel flow because of the relative roughness of the wall to the mean free 

path of the air traveling through.  This can be further simplified for the test case of plate 

Poiseuille flow, a pressure driven flow in a cavity such as seen in a typical water pipe.  
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gasu
Kn
µ

τ =
 (8) 

This expression, used in conjunction with a calculated Knudsen number  can 

determine shear stress.  The calculation for Knudsen number tabulated at various 

pressures for the test geometry can be found in Appendix A.   

2. CFD Validation Equation 

Once the shear stress is specified, the average and maximum velocities for both 

the slip and no slip cases can be calculated using CFX Solver.  The setup which will be 

described was run with both the slip and no-slip cases.  The results were used to find the 

necessary values for calculation purposes.  For a generic no-slip Poiseuille flow, it has 

been shown that the maximum velocity is  

 
( )2

 2no slip
Re dPu y y

dx
= −

 (9) 

Due to the parabolic nature of the fluid flow, the maximum velocity is simply 

Equation 5 evaluated at y=0.5.  Therefore, the maximum velocity for a no slip case is: 

 

 
 

1
2 4

maxno slip
maxno slip

Re dPu
dx

− =  
   (10) 

For the slip case, the parabola is shifted downstream which signifies a measurable 

velocity at the wall.  To account for this shift the previous two equations can be rewritten 

for the slip case.   

 
( )2

 
Re
2slip

dPu y y
dx

α= − −
 (11) 

 
max  

Re 1 
2 4slip

dPu
dx

α− = − 
   (12)

 

To get the average velocities, the equations for slip and no slip velocity are simply 

one half of the maximum velocities.  Therefore, putting the following terms together, the 

following equation can be produced to validate four computable quantities: 
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1
               2 4

1
2 4

1
4

1
4

maxno slip

maxno slip mean slip mean slip

maxno slipmax slip mean no slip mean no slip

meanno slip

mean slip

Re dP
u u udx

Re dPu u u
dx

u

u

α

α

− 
      =        −     − 

 
− 

 
 =
− −



 

  

     1
1 4

mean slip

mean no slip

u
u α

 
=   +  

  (13) 

Rearranged, the following can be established: 

 

   

  

4 1
       

max slip mean no slip

maxno slip mean slip

u u
u u

α = −
 (14) 

Where 

 

2 v

v

Knσα
σ
−

=
 (15) 

This is a useful step because it is now possible to use this equation to allow 

validation of the computed velocities against the Knudsen number.  Again, this is a result 

of the assumption that 1vσ = .  

 

   

  

4 1
       

max slip mean no slip

maxno slip mean slip

u u
Kn

u u
= −

 (16) 

If the first order assumption is correct, there should be a linear relationship 

between the Knudsen number and the calculated mean and maximum velocities for no-

slip and slip flow. 

B. COMPUTATIONAL SETUP 

1. Geometry 

For the Poiseuille flow validation case, the geometry used was a basic rectangular 

channel as shown in Figure 4. 
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Figure 4.   Geometry for Poiseuille Validation 

The dimensions as shown are 50 microns by 25 microns.  This was designed to be 

half of a symmetric channel cross section for ease of calculation purposes.  A simple 

geometry like this is not very computationally expensive; therefore, meshing is not as 

crucial as it will be in later simulations.  A mesh refinement study was conducted and had 

no effect on the results of this validation. 

2. Meshing 

The meshing was simple because of the basic geometry involved in this 

simulation.  A sweep method is able to be used with five cells across due to the fact that 

the outer walls of the channel exhibit a symmetry boundary condition.  Because CFX is 

inherently a three-dimensional solver, it will not run with only one element across.  That 

will create a of circular reference and not produce logical results, if any are produced at 

all.  There were ultimately 10,580 elements in the mesh.   
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Figure 5.    Poiseuille Validation Mesh 

3. Setup 

Correctly setting up the boundary conditions is the most important part of this 

validation process.  There were two different setups for the different scenarios, one 

including slip flow and the other making the no-slip assumption.  In this particular case, 

since the passage is so small, driving the Reynolds number lower, laminar flow is 

assumed.     

a. Domain 

Throughout this entire process the fluid used was assumed to be air as an 

ideal gas. The reference pressure, which drives the Knudsen number, can be modified to 

collect different validation test points at different locations.   
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b. Boundary Conditions 

 

Figure 6.   Description of Boundary Conditions for Validation 

In both cases the top wall in addition to the two sides were set up as 

symmetry walls.  The flow was driven through the section by a pressure differential 

between the inlet and the opening.  The pressure drop across this 50 micron length was 2 

Pascals.  Although 2 Pascals seems insignificant, the pressure drop per unit length was: 

 
6

2 40,000
50 10

dP Pa Pa
mdx m−= =

×  
(17) 

The low pressure, varying from 200 Pascals to 2,000Pascals, in addition to 

the small characteristic length of the geometry, provided for the necessary Knudsen 

number to induce slip flow.    

c. Slip and No Slip Conditions 

CFX has four built in functions when setting up a wall boundary 

condition.  The four built-in options are as follows:  no slip, free slip, finite slip and 

specified shear.  The no slip condition works for the continuum regime where the shear 
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stress is equal to the product of the velocity gradient at the wall and the viscosity of the 

fluid.  However, when attempting to represent the slip regime, an expression must be 

written to describe the shear stress at the wall.  This expression is the same that was 

mentioned before as:  

 
gasu
Kn
µ

τ =
 (18) 

The setup can be viewed in more detail in Appendix B. 

C. RESULTS 

After successful runs of this simple geometry under the aforementioned setup, the 

centerline velocity as well as the average velocity were able to be calculated.  The 

centerline velocity was simply the maximum velocity and the average velocity was 

calculated using the following expression: 

 

mv
Aρ

=


 (19) 

Using this, the average and maximum velocities were tabulated while varying the 

reference pressure from 200Pa to 2,000Pa.  This allowed for the calculation of: 

 

   

  

4 1
       

max slip mean no slip

maxno slip mean slip

u u
Kn

u u
= −

 
(20) 

Figure 7 shows the computed velocity profile at a relative pressure of 200Pa.  The 

slip velocity follows the same parabolic shape, just translated to account for the slip 

velocity.  This is characteristic of a first order approximation of slip velocity.  The 

tabulated results at different Knudsen numbers can be found in the table located in 

Appendix C and plotted in Figure 8, the Knudsen number versus (21). 

    

  

1 14        
max slip mean no slip

maxno slip mean slip

u u
u u

 
−  

 
 (21) 
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Figure 7.   Velocity Distributions of Slip and No-Slip Flow at 200Pa Relative Pressure 
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D. DISCUSSION 

 
Figure 8.   Plot of Slip Flow Validation 

As shown in Figure 7 and Figure 8, the expression for the shear stress while under 

the slip condition definitely calculated a slip velocity at the wall as opposed to the zero 

velocity condition in the no slip case.  However, the first order approximation which 

predicts the relationship between the maximum and average velocities of the slip and no 

slip boundary conditions does not match up perfectly with what CFX calculated.  In 

future studies, a second degree analysis of the shear stress in the slip flow regime should 

be considered for comparison purposes.  This will allow not only the parabolic profile to 

be shifted downstream, but also allow for a non-parabolic flow distribution.  The general 

trend, however, of the slip flow exhibiting larger maximum and average velocities holds 

thus proving the effectiveness of the expression.  
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III. TWO-DIMENSIONAL SIMULATIONS OF MICRO 
TURBOPUMP 

The design of the initial micro turbopump was driven by the geometric constraints 

of the vacuum pump manufacturing process.  This resulted in a planar centrifugal-style 

pump with concentric rotor and stator stages.  Photolythography, the micro-etching 

process which will be used, limits designs to flat surfaces.  For ease of calculation and to 

improve computational efficiency, the entire model was constructed using SolidEdge but 

the actual computational molecule consisted of two rows of stator blades and one row of 

rotor blade.  For the two-dimensional case, these blades were modeled with symmetry 

conditions at both ends thereby simulating infinite span.   

A. FIRST DESIGN ITERATION 

1. Geometry 

The ability for Solid Edge to create interrelated variables for updating design 

features of this pump made it a desirable solid modeler for the project.  This allowed the 

compressor blades to be modified without actually having to create new drawings and 

repattern the blades around the disk.  The drawings of existing designs were obtained and 

modeled using SolidEdge.  To accurately model the initial designs, the blade counts of 

each individual stage were tabulated and the shape of each blade was measured.  The 

initial design's first stage consisted of three blade rows: two stationary stator rows with 

the rotor blade sliding between them.  There were 696 and 684 stator blades in the outer 

and inner row respectively and 68 rotor blades.  Each dimension was set as a variable in 

solid edge to allow modification of the shape and count of each blade.  The rotor and 

stator were created as two separate parts and combined in an assembly.  Although only 

one stage was simulated for computational efficiency, the actual machine will consist of 

100 stages.    
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Figure 9.   Initial Stator Design 

 

 

Figure 10.   Initial Rotor Design 
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Figure 11.   Gas Path Model in ANSYS/CFX of Initial Two-Dimensional Design 

The assembled rotor and stator were used to cut the gas paths for importing into 

CFX. Three gas paths, one for each stage were imported into CFX.   The initial study was 

two-dimensional and so symmetry conditions were used on the top and bottom surfaces.  

2. Meshing 

The mesh of 64,560 million elements was generated using a swept mesh method 

in the span-wise direction while a fine refinement was set, providing a good two-

dimensional mesh.  Figure 12 shows the coarseness of the mesh away from the blades 

area. Figure 13 shows the fine mesh in between the blade stages. A match control was 

also used for all of the rotational simulations done in both the two-dimensional and three-

dimensional realm.  This means that the elements on one side of the sector match up 

perfectly with the elements on the other side of the sector.  This is necessary to save 

computational time while properly simulating only a small sector of the pump. 

Stator 1 

Stator 2 

Rotor 



 22 

 

Figure 12.   Mesh for Two-Dimensional Iteration 1 

 
 

 
Figure 13.   Swept Method of Mesh for Two-Dimensional Iteration 1 
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3. Setup 

The setup for this geometry assumes a two dimensional turbopump.  This is 

accomplished by assigning symmetry conditions at the top and bottom of the model.  In 

addition, periodic boundaries were set on the radial boundaries, simulating the full rotor 

and stator rows.  The detailed setup of the simulation can be found in Appendix D.  The 

setup of this rotor-stator assembly depends greatly on the interfaces. The radial faces 

have a symmetry interface, annotated in Figure 13, simulating a complete stage while 

being computationally more efficient.  There are also moving interfaces between the rotor 

blades and the stator blades.  The transient and steady state runs have very similar setups, 

with a few modifications.  The complete steady-state setup is presented in Appendix D 

while the transient is presented in Appendix E.  

4. Results 

The simulation run for this with 100 iterations of assumed steady state flow 

assuming averaging of the flow across the moving interfaces The transient simulations 

were then run until the pressure and power began to converge to a consistent sinusoidal 

motion.  Figure 14 shows the convergence of the pressure ratio minus one to an average 

value of approximately 2.71E-02.  The values of pressure ratio were normalized to 1 for 

ease of reporting minor changes.  However, realistically, the pressure ratio is about 

1.0271.  With its very small scale and the fact that the pump was working in a constant 

effort to drive the air out of the center of the pump, the convergence required of the 

observed parameters (power and pressure ratio required a high number of iterations.  this 

seems computationally expensive, the lack of a turbulence model as well as the two 

dimensional nature of the problem meant it ran relatively quickly using x parallel 

processes on an x MHz machines. Typical two-dimensional runs took x hours.  This 

flowed inward, creating a vacuum on the outer portion of the stage. 
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Figure 14.   Pressure Ratio Two-Dimensional First Design Iteration 

 

Figure 15.   Zoomed in Pressure Ratio Two-Dimensional First Design Iteration 

Looking at the other monitored point throughout the simulation, the blade power, 

it can also be seen in Figure 16 and Figure 17 that it operates at a very low power, 

oscillating with the pressure ratio converging to a value of 1.9E-7 J.   
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Figure 16.   Single Blade Power for Two-Dimensional First Design Iteration 

 
 

Figure 17.   Zoomed In Single Blade Power for Two-Dimensional First Design Iteration 
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Figure 18.   Pressure Distribution at Minimum Pressure Ratio 

 
Figure 19.   Pressure Distribution at Maximum Pressure Ratio 
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Figure 20.   Velocity Vector Field at Minimum Pressure Ratio 
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Figure 21.   Velocity Vector Field at Maximum Pressure Ratio 

The vector field at the maximum pressure ratio, Figure 21, shows a minimization 

of flow escaping from the vacuum.  This design drives the air towards the center of the 

pump, thereby creating a vacuum pressure on the outside and a higher pressure on the 

inside.  Figure 18 and Figure 19 both further emphasize this.  In Figure 19, the maximum 

pressure ratio case, the rotor blade has the very high pressure region in between itself and 

the high pressure stator.   

B. SECOND DESIGN ITERATION 

1. Geometry 

The second design iteration consisted of a more traditional centrifugal concentric 

stage pump where the flow is pumped from the inner radius to the outer radius.  Although 

the procedure for creating these is similar to that of the first iteration, the blades 

themselves are slightly different.  These blades have more camber, a longer chord and  
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additional overlap.  Different length blades were simulated to try and maximize the 

pressure ratio of the stage.  Figure 22 shows the 34 Blade count with a 1500 micron chord 

on the same 16 millimeter diameter disk used in the first iteration in II.B.i.   

 

Figure 22.   Geometry for 2nd Iteration of Two-Dimensional Simulation 

2. Meshing 

The mesh settings were similar to that of the initial design.  Just as in the initial 

validation, it was not necessary to use many elements in the span-wise direction due to 

the two-dimensional nature of the problem and the symmetry conditions which 

accompany it.  However, it is necessary to refine the mesh along the leading and trailing 

edges of each blade to more accurately model the air as an ideal gas through the very low 

pressures.  Figure 23 shows the mesh of the air molecules with 111,565 elements.  



 30 

 

Figure 23.   Mesh of Second Two-Dimensional Iteration 

3. Setup 

Similar to the meshing and initial geometry, the setup was very similar to that of 

the initial design.  The top and bottom faces were set up as symmetry conditions whereas 

edges of each stage were set up as matched periodic boundaries as shown in Figure 23. 

As before a steady-state solution was needed to provide initial conditions to the transient 

simulations.  After this, it was necessary to ramp up the speed of the blades as opposed to 

going from steady state to a rotation of 200,000 revolutions per minute, the design speed.  

In addition to this, the memory allocation factor in the simulation setup must be turned 

from 1.0 to 1.2 for each case.  This is further explained in Appendix D.   

4. Results 

The run completed with maximum root mean square (RMS) residuals converging 

to a value of approximately 1.0e-6 with double precision computing.  The primary 

monitored property is the pressure ratio, which was set as a monitor point before the run 

started.  Figure 24 and Figure 25 are representations of the pressure ratio as a function of 

the timestep.   
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Figure 24.   Pressure Ratio vs. Timestep for Two-Dimensional Run 

 

 
Figure 25.   Pressure Ratio vs. Timestep for Two-Dimensional Run Zoomed In 

As shown, the pressure ratio for this design is set to converge to an approximate 

value of 0.0735.  This is more favorable than the first design, mainly because it produces  

 

 

6.00E-02

7.00E-02

8.00E-02

9.00E-02

1.00E-01

1.10E-01

1.20E-01

1.30E-01

0 500 1000 1500 2000 2500 3000 3500 4000

P o
,e

xi
t/ P

o,
In

le
t–

1 

Accumulated Timestep 

6.80E-02

7.00E-02

7.20E-02

7.40E-02

7.60E-02

7.80E-02

8.00E-02

2700 2900 3100 3300 3500 3700 3900

P o
,e

xi
t/ P

o,
In

le
t–

1 

Accumulated Timestep 

Figure 25 

Max Press. Ratio 

Min Press. Ratio 



 32 

a larger average magnitude of a pressure ratio.  The two key points are the minimum and 

maximum values for this oscillating plot.  The pressure distribution can be studied at the 

two points as shown in Figure 26 and Figure 27.   

 
Figure 26.   Minimum Pressure Ratio Two-Dimensional 2nd Design 
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Figure 27.   Maximum Pressure Ratio Two-Dimensional 2nd Design 

The same plots can be compared with velocity vector distributions, as shown in 

Figure 28 and Figure 29. 
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Figure 28.   Velocity Distribution at Max Press Ratio, Two-Dimensional 2nd Design 

 

 
Figure 29.   Velocity Distribution at Min Press Ratio, Two-Dimensional 2nd Design 
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As shown, at the minimum pressure ratios, there is a much larger amount of 

recirculation in between the blades leading to flow reversal and thus working against the 

pressure gradient the rotor is trying to build up across the stage.  At the maximum 

pressure ratios, the velocity vector field is much more aligned with the stage and 

therefore more effective in driving air out of the vacuum.  This is inherent to the flow of 

this type of machine as the net flow will eventually be zero.  This can also be seen 

through the point of view of streamlines in the flow as shown in Figure 30 and Figure 31.   

 

Figure 30.   Minimum Pressure Ratio Streamlines 
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Figure 31.   Maximum Pressure Ratio Streamline 

In this case that is completely converged, the flow has been successfully driven 

out of the center of the pump, thereby creating a vacuum.  Although some of the 

streamlines make it out of the pump, the recirculation is very apparent in these 

streamlines.  
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Figure 32.   Single Blade Power for Two-Dimensional Design 2 

The power converges to a mean value of approximately 9.6E-3 Watts.  With 34 

blades in this design, the power consumption of the entire blade row is 0.3264 watts.  

This value is smaller than that which will be seen in the three-dimensional case, namely 

because of the lack of the recirculatory region which will be seen in the three dimensional 

case over the tip gap.   
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IV. THREE-DIMENSIONAL SIMULATIONS OF MICRO 
VACUUM PUMP 

The three-dimensional simulation is necessary based on the tip gap region which 

is relatively larger than larger vacuum pumps.  The three-dimensional modeling of the 

vacuum pump used the second iteration of the two-dimensional design but included a 

5μm tip gap and the blade pedestals of the actual rotor geometry.  The three-dimensional 

case required more elements because 5 elements were included in the tip gap region. 

A. GEOMETRY 

As mentioned, the three-dimensional geometry was based on the second iteration 

of two-dimensional geometry.  Unlike the two-dimensional case, this consisted of an 

assembly of two different disks; one containing the rotor blades and the other containing 

the stator blades.  Figure 33 shows the rotors blades and how they are etched on top of a 

pedestal which must also be modeled.   

 

 

Figure 33.   Rotor Blades for Three-Dimensional Simulation 

The stator blades are very similar, the only difference being that there are two 

rows of blades to model the one and a half stage representation of the vacuum pump.   
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Figure 34.   Stator Blades 

These contain the same pedestals that the rotor contained.  The two were then 

assembled, one on top of the other.  A 5μm tip gap was left between the blade tip and the 

trench between the blade pedestals.   After the design was modeled in SolidEdge, it was 

used as a negative to cut material out of an air volume thus ultimately modeling the air as 

opposed to the pump itself.  After the geometry was finalized in SolidEdge, it was able to 

be imported into CFX for the setup of the fluid study.  A graphical representation of the 

volumes containing the rotor and stator blades is shown in Figure 35.   
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Figure 35.   Computational Domain for Three-Dimensional Solver 

B. MESHING 

A crucial part of the three-dimensional modeling is that each control volume 

entirely contains the rotor and stator blades. If this is not done complications result with 

the symmetry condition between the two air molecules because one face has more 

elements than the other.  This can be seen in the Figure 36 showing the fine mesh with 

just over 5 million elements.   

 

Figure 36.   Mesh of Three-Dimensional Model 
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Figure 37.   Mesh Interfaces of Three-DimensionalModel 

As mentioned, the complexity of the three-dimensional mesh comes from the 

necessity to place a minimum of five nodes across any given gap, including the five 

micron tip gap.  This also comes from the fact that span-wise there must be more than 

five elements across the blade like the two-dimensional case to accurately model three-

dimensional effects. 

C. SETUP 

1. General Setup 

Similar to the two-dimensional simulations, air as an ideal gas was used as the 

fluid at atmospheric conditions.  The faces between the inlet and the first stator row, 

stator and rotor, etc were modeled as symmetry faces while the top and bottom faces 

were modeled as walls with a no slip condition.  The assumption of laminar flow holds 

for this study because of the fact that the characteristic length and thus Reynolds's 

number is so small.  More detailed setups can be found in Appendices F and G. 

2. Steady State 

To begin the steady state run, the stationary system was first allowed to run out 

for 200 iterations to provide initial results for the next step with a steady-state yet rotating 

assembly.  However, rather than jumping from 0rpm to the specified 200,000rpm, it was 
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necessary ramp up the speed gradually for 50-100 iterations at increasing speeds to 

prevent the solver from crashing.  Ultimately, the 200,000rpm speed was run out to an 

RMS residual convergence of 1E-6.   

2. Transient 

Following the completion of the steady state run, the completed results were used 

as the input file to the transient run.  The mixing model within the interfaces between the 

rotor and stator faces were changed to a Transient Rotor and the analysis was changed to 

a transient run with a total time of ten blade passing.  A fixed timestep was used to avoid 

complications with the adaptive timestepping driving the timestep smaller and smaller, 

thus never reaching the total time assigned to this particular analysis type.  A more 

detailed setup for this can be found in Appendix G.  

D. RESULTS 

In general, the three dimensional case, that included the five micron tip gaps 

produced a much less favorable pressure ratio than found in the two dimensional case.  

Although a tip gap of 5 microns may seem insignificant, for such a small scale pump, this 

is relatively large.  Five microns on a 150 micron blade, makes up over 3% of the 

distance between the two rotating disks. There is an large tip leakage, as seen in Figure 

38. 
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Figure 38.   Tip Leakage over Stator Blade 

Figure 38 shows streamlines originating from the inlet to the stage and a half 

turbopump section.  The streamlines are seen to wrap around the stator blades expected 

but are then sucked back towards the center of the device over the tip gap.  Similar 

phenomena are noticed when streamlines are studied in the tip gaps of the second stage of 

stator blades as well as over the rotor blades.  

Another interesting aspect is the flow accelerating across the tip gap.  As shown 

in Figure 39 the plane cutting the tip gap in half, actually shows regions of high velocity 

across the top of the blade.  
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Figure 39.   Velocity Distribution in Tip Gap 

As mentioned, the pressure ratio was slightly not as desirable as the two-

dimensional iteration, but Figure 40 and Figure 41 show both the full convergence of the 

pressure ratios in addition to a zoomed in shot of the last few blade passings where the 

solution was most converged, to RMS max residuals of about 1E-5.  Recall that for the 

two-dimensional case the normalized converged pressure ratio was 7.22E-2. 



 46 

 

Figure 40.   Pressure Ratio for Three-Dimensional Simulation 

 

Figure 41.   Zoomed Pressure Ratio for Three-Dimensional Simulation 

The other output parameter of interest was the power consumed by the blade.  The 

convergence history of this, showing the last iterations can be seen in Figure 42.   
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Figure 42.   Single Blade Power for Three-Dimensional Simulation 

This is a small power requirement, but this is due to the fact that it is only the 

power of one blade on a stage with 56 blades, with a potential for 100 stages on the 

pump.  The power consumption for the entire stage will be about 0.4648 watts.  The 

smaller stages will operate at lower pressure and thus consume less power.  Studying the 

spikes in the pressure ratio and power plots, there are four key pointsin each blade 

passing- , as annotated in Figure 43, a minimum at timestep 692, a maximum at 722 and 

two other local maxima at 699 and 737. 
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Figure 43.   Critical Time Steps in Three-Dimensional Simulation 
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Figure 44.   Pressure Plot Differences at Critical Time Steps 

Figure 44 provides a comprehensive analysis as to why the various spikes in pressure and 

power occur over the course of a blade passing.  It is very possible to see the stagnation 

point on the outer stator blade and the rotor as the rotor moves past.  One of the driving 
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factors in the pressure ratio across this three dimensional model is the fact that as the 

stagnation pressure increases at the leading edge of any of the blades, a high pressure 

region forms thereby forcing air through the tip gaps present.  Thus, at the 692 time step, 

Figure 44 shows a minimum pressure ratio and Figure 44 show a large stagnation 

pressure at the end of the rotor blade, driving flow in inward even though the pump is 

trying to pump outward.  Similarly, at timestep 722 has the smallest stagnation pressures 

therefore leading to the most effective position of the rotor blade and the greatest pressure 

ratio.   
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V. CONCLUSIONS 

It has been demonstrated that a commercial code, in this case, CFX, is capable of 

computing slip flow.  The computational fluid dynamics validation showed it is possible 

to easily model slip flow at the wall at Knudsen number  flows between 0.001 to 0.1.  To 

achieve greater accuracy, a second order analysis for this phenomenon would better 

simulate flow at higher Knudsen numbers.    

A roughing pump stage was designed and simulated using a two dimensional 

simulation.  The stage consisted of a stationary inlet and outlet surrounding a rotor blade 

row.  To account for tip losses, a three dimensional simulation was conducted.  With the 

methods developed, it is possible to predict pressure ratio and power consumption of this 

particular stage.  The final predicted pressure ratio of a stage with tip clearance is 1.0722 

with power consumption of 0.4648 watts.   
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VI. RECOMMENDATIONS 

Further study on design optimization and second-order slip flow should be 

conducted.  Using a three-dimensional geometry and mesh, the blades should be modified 

to improve effectiveness forcing air out of the pump as opposed to the typical airfoil seen 

in macro-scale turbomachinery.  The geometry and orientation of the blades should be 

designed in order to minimize tip leakage, most easily by minimize the large pressure 

developing on the inside of the stage, forcing air out in the wrong direction.   

Once the general idea for a geometry is discovered, the setup of the CFD solver 

should be modified to utilize the slip flow expression vice the no slip condition that was 

used in this study.  At the small scale and vacuum-like pressures, slip flow definitely 

occurs, especially through the tip leakages, thereby increasing the ability of air to escape 

across the tips, taking even more of a loss in pressure ratio.  The full CFD analysis 

required to solve this problem is neither simple nor computationally inexpensive.  It is 

necessary for a full three-dimensional solution incorporating a slip flow shear stress 

iterative expression, leading to a more accurate model of the MEMS-Scale 

Turbomachinery Based Vacuum Pump.   
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APPENDIX A KNUDSEN NUMBER AT VARYING PRESSURES 

No. Bolt Cnst Temp Pres Mol diam Viscosity L Mn fr pth (2) Knudsen 
  k [m2.kg.s-2] T [K] P  [Pa] σ [m] μ [N.s/m^2] [m] L [-] 

1 1.38E-23 288.15 200 3.70E-10 1.80E-05 0.00005 3.27E-05 6.54E-01 
2 1.38E-23 288.15 300 3.70E-10 1.80E-05 0.00005 2.18E-05 4.36E-01 
3 1.38E-23 288.15 400 3.70E-10 1.80E-05 0.00005 1.64E-05 3.27E-01 
4 1.38E-23 288.15 500 3.70E-10 1.80E-05 0.00005 1.31E-05 2.62E-01 
5 1.38E-23 288.15 600 3.70E-10 1.80E-05 0.00005 1.09E-05 2.18E-01 
6 1.38E-23 288.15 700 3.70E-10 1.80E-05 0.00005 9.34E-06 1.87E-01 
7 1.38E-23 288.15 800 3.70E-10 1.80E-05 0.00005 8.18E-06 1.64E-01 
8 1.38E-23 288.15 900 3.70E-10 1.80E-05 0.00005 7.27E-06 1.45E-01 
9 1.38E-23 288.15 1000 3.70E-10 1.80E-05 0.00005 6.54E-06 1.31E-01 

10 1.38E-23 288.15 2000 3.70E-10 1.80E-05 0.00005 3.27E-06 6.54E-02 
 

Table 1.   Mean Free Path and Knudsen Number Calculations 
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APPENDIX B CFX SETUP FOR POISEULLE FLOW 
VALIDATION 

Analysis Type Basic Settings 
• External Solver Coupling 

o Option:     None 
• Analysis Type 

o Option:    Steady State 
Default 
Domain 
Modified 

Basic Settings 
• Location & Type 

o Location:    B30 
o Domain Type:    Fluid Domain 
o Coordinate Frame:   Coord 0 

• Fluid and Particle Definitions… 
o Fluid 1 

 Option:    Material Library 
 Material:   Air Ideal Gas 
 Morphology 

• Option:   Continuous Fluid 
 Minimum Volume Fraction: unchecked 

• Domain Models 
o Pressure 

 Reference Pressure:   200 [Pa]** 
** THIS CHANGED BASED ON DESIRED KNUDSEN 
NUMBER  

o Buoyancy Model 
 Option:    Non Buoyant 

o Domain Motion 
 Option:    Stationary 
 Mesh Deformation:  None 

Default 
Domain 
Modified 

Fluid Models 
• Heat Transfer 

o Option:       Total Energy 
o Incl. Viscous Work Term:     CHECKED 

• Turbulence 
o Option:       None (Laminar) 

• Combustion 
o Option:       None 

• Thermal Radiation 
o Option:       None 

• Electromagnetic Model:      unchecked 
Default 
Domain 
Modified 

Initialization 
• Domain Initialization:      unchecked 

Default 
Domain 
Modified 

Default Domain 
Modified Default 

Basic Settings 
• Boundary Type:    Symmetry 
• Location:    F25.30,F27.30 
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Default 
Domain 
Modified 

Inlet Boundary Details 
• Mass And Momentum 

o Option:    Conservative 
Interface Flux 

• Turbulence 
o Option:    Conservative 

Interface Flux 
• Heat Transfer 

o Option :   Conservative 
Interface Flux 

Default 
Domain 
Modified 

Inlet Basic Settings 
• Boundary Type:   Opening 
• Location:                              Inlet 
• Coord Frame:   unchecked 

Default 
Domain 
Modified 

Inlet Boundary Details 
• Flow Regime                                    Subsonic 
• Mass And Momentum 

o Option:    Static Pres. and Dim 
o Relative Pressure: 0 [Pa] 

• Flow Direction 
o Option:    Normal to Boundary 

   Condition 
• Heat Transfer 

o Option :   Opening  
   Temperature 

o Opening Temperature: 288.15 [K] 
Default 
Domain 
Modified 

Inlet Sources 
• Boundary Source:  unchecked 

Default 
Domain 
Modified 

Outlet Basic Settings 
• Boundary Type:   Outlet 
• Location:   Outlet 
• Coord Frame:   unchecked 

Default 
Domain 
Modified 

Outlet Boundary Details 
• Flow Regime                                    Subsonic 
• Mass And Momentum 

o Option:    Average Static  
   Pressure 

o Relative Pressure: -2 [Pa] 
o Pres. Profile Blend 0.05 

• Pressure Averaging 
o Option:   Average Over Whole 

   Outlet 
Default 
Domain 
Modified 

Outlet Sources 
• Boundary Source:  unchecked 

Default 
Domain 
Modified 

Symmetry Basic Settings 
• Boundary Type:   Symmetry 
• Location:   Symmetry 

Default 
Domain 
Modified 

Knudsen Wall Basic Settings 
• Boundary Type:   Wall 
• Location:   KnudsenWall 
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Default 
Domain 
Modified 

Knudsen Wall (for 
Slip Flow Cases) 

Boundary Details 
• Mass and Momentum 

o Option   Specified Shear 
• Shear Stress 

o Option   Cartesian  
   Components 

o X Component  ShearSlip 
o Y Component  ShearSlip 
o Z Component  ShearSlip 

• Heat Transfer 
o Option   Adiabatic 

Default 
Domain 
Modified 

Knudsen Wall (for 
No Slip Cases) 

Boundary Details 
• Mass and Momentum 

o Option   No Slip Wall 
o Wall Velocity  unchecked 

• Heat Transfer 
o Option   Adiabatic 

Default 
Domain 
Modified 

Knudsen Wall Sources 
• Boundary Source:  unchecked 

Solver No Category Settings 
Solver Solution Units Basic Settings 

• Mass Units:   [kg] 
• Length Units:   [m] 
• Time Units:   [s] 
• Temperature Units  [K] 
• Angle Units:   CHECKED 

o Angle Units:  [rad] 
• Solid Angle Units:  CHECKED 

o Solid Angle Units: [sr] 
Solver Solver Control Basic Settings 

• Advection Scheme 
o Option:    High  

    Resolution 
• Convergence Control 

o Min. Iterations   1 
o Max. Iterations   10000 
o Fluid Timescale Control 

 Timescale Control: Auto  
   Timescale 

 Length Scale Option Conservat. 
 Timescale Factor  1.0 
 Maximum Timescale unchecked 

• Convergence Criteria 
o Residual Type:   RMS 
o Residual Target:   2e-22 
o Conservation Target:  unchecked 

• Elapsed Wall Clock Time Control:  unchecked 
• Interrupt Control:    unchecked 

Solver Solver Control Equation Class Settings 
• Equation Class:   Continuity 
• Continuity:  unchecked 
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Solver Solver Control Advanced Options 
• Dynamic Model Control:   CHECKED 

o Turbulence Control:  unchecked 
o Hydro Control:   unchecked 

• Pressure Level Information:  unchecked 
• Body Forces:    unchecked 
• Interpolation Scheme:   unchecked 
• Temperature Damping:   unchecked 
• Velocity Pressure Coupling:  unchecked 
• Compressibility Control:   unchecked 

Solver Output Control Results 
• Option:     Standard 
• File Compression:   Default 
• Output Equation Residuals:  unchecked 
• Extra Output Variable List   unchecked 

Solver Output Control Backup Results:     Blank 
Solver Output Control Monitor 

• Monitor Objects:    unchecked 
Expressions MeanFreePath boltzmann*ave(Total Temperature )@REGION:B30/(sqrt(2) 

*pi*ave(Absolute Pressure )@REGION:B30*MolecularDiam^2) 
Expressions MolecularDiam 3.7e-10[m] 
Expressions ShearNoSlip ave(Wall Shear )@REGION:KnudsenWall 
Expressions ShearSlip -ave(Velocity )@REGION:KnudsenWall*1.8E-5[N s m^-

2]/(MeanFreePath) 
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APPENDIX C POISEULLE VALIDATION TABULATED 
RESULTS 
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APPENDIX D SETUP FOR STEADY STATE 2D 

Analysis Type Basic Settings 
• External Solver Coupling 

o Option:     None 
• Analysis Type 

o Option:    Steady State 
Rotor Basic Settings 

• Location & Type 
o Location:    B272 
o Domain Type:    Fluid Domain 
o Coordinate Frame:   Coord 0 

• Fluid and Particle Definitions… 
o Fluid 1 

 Option:    Material Library 
 Material:   Air Ideal Gas 
 Morphology 

• Option:   Continuous Fluid 
 Minimum Volume Fraction: unchecked 

• Domain Models 
o Pressure 

 Reference Pressure:   1 [atm] 
o Buoyancy Model 

 Option:    Non Buoyant 
o Domain Motion 

 Option:    Rotating 
 Angular Velocity  200000 [rev min^-1] 

o Axis Definition   
 Option   Coordinate Axis 
 Rotation Axis  Global Z 
 Mesh Deformation:  None 

o Mesh Deformation 
 Option   None 

Fluid Models 
• Heat Transfer 

o Option     Total Energy 
o Incl. Viscous Work Term   Checked 

• Turbulence 
o Option     None (Laminar) 

• Combustion  
o Option     None 

• Thermal Radiation 
o Option     None 

• Electromagnetic Model    Unchecked 
Initialization 

• Domain Initialization 
o Frame Type    Rotating 
o Coord Frame    Unchecked 

• Initial Conditions 
o Velocity Type   Cylindrical 
o Cylindrical Velocity Components 

 Option    Automatic 
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o Velocity Scale    Unchecked 
• Static Pressure  

o Option     Automatic 
• Temperature  

o Option     Automatic 
Rotor Rotor Default Basic Settings 

• Boundary Type:    Wall 
o Location:   (automatically fills 

   out) 
o Coord Frame  Unchecked 
o Frame Type  Rotating 

Boundary Details 
• Mass and Momentum 

o Option   No Slip Wall 
o Wall Velocity  Unchecked 

• Heat Transfer 
o Option   Adiabatic 

Sources 
• Boundary Source:   Unchecked 

 
Rotor Rotor_Symmetry Basic Settings 

• Boundary Type:   Symmetry 
• Location:                              R1_Top, R1_Bottom 

Stator Basic Settings 
• Location & Type 

o Location:    B1706,B2045 
o Domain Type:    Fluid Domain 
o Coordinate Frame:   Coord 0 

• Fluid and Particle Definitions… 
o Fluid 1 

 Option:    Material Library 
 Material:   Air Ideal Gas 
 Morphology 

• Option:   Continuous Fluid 
 Minimum Volume Fraction: unchecked 

• Domain Models 
o Pressure 

 Reference Pressure:   1 [atm] 
o Buoyancy Model 

 Option:    Non Buoyant 
o Domain Motion 

 Option:    Stationary 
o Mesh Deformation 

 Option   None 
Fluid Models 

• Heat Transfer 
o Option     Total Energy 
o Incl. Viscous Work Term   Checked 

• Turbulence 
o Option     None (Laminar) 

• Combustion  
o Option     None 

• Thermal Radiation 
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o Option     None 
• Electromagnetic Model    Unchecked 

Initialization 
• Domain Initialization 

o Frame Type    Rotating 
o Coord Frame    Unchecked 

• Initial Conditions 
o Velocity Type   Cylindrical 
o Cylindrical Velocity Components 

 Option    Automatic 
o Velocity Scale    Unchecked 

• Static Pressure  
o Option     Automatic 

• Temperature  
o Option     Automatic 

Stator Stator Default Basic Settings 
• Boundary Type:    Wall 

o Location:   (automatically fills 
   out) 

o Coord Frame  Unchecked 
o Frame Type  Rotating 

Boundary Details 
• Mass and Momentum 

o Option   No Slip Wall 
o Wall Velocity  Unchecked 

• Heat Transfer 
o Option   Adiabatic 

Sources 
• Boundary Source:   Unchecked 

Stator Inlet Basic Settings 
• Boundary Type:   Wall 
• Location    S1_Inlet 
• Coord Frame:   Unchecked 

Boundary Details 
• Mass and Momentum 

o Option    No Slip Wall 
o Wall Velocity   Unchecked 

• Heat Transfer 
o Option    Adiabatic 

Sources 
• Boundary Source:   Unchecked  

Stator Outlet Basic Settings 
• Boundary Type:   Opening 
• Location    S2_Outlet 
• Coord Frame:   Unchecked 

Boundary Details 
• Flow Regime                                    Subsonic 
• Mass And Momentum 

o Option:    Entrainment 
o Relative Pressure: 0 [Pa] 

• Pressure Option   Static Pressure 
• Loss Coefficient   Unchecked 
• Heat Transfer 
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o Option:   Opening Temp 
o Opening Temp  288.15 [K] 

Sources 
• Boundary Source:  unchecked  

Stator S1_Symmetry Basic Settings 
• Boundary Type:   Symmetry 
• Location:                              S1_Top, S1_Bottom 

Stator S2_Symmetry Basic Settings 
• Boundary Type:   Symmetry 
• Location:                              S2_Top, S2_Bottom 

Interfaces R1_to_S2 Basic Settings 
• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Rotor 
o Region List  R1_Outlet 

• Interface Side 2 
o Domain   Stator 
o Region List  S2_Inlet 

• Interface Models 
o Option   General Connection 

• Frame Change/ Mixing Model 
o Option   Frozen Rotor 
o Rotational Offset  Unchecked 

• Pitch Change 
o Automatic 

Additional Interface Models 
• Mass and Momentum 

o Option   Conservative  
   Interface Flux 

• Interface Model 
o Option   None 

• Conditional Connection Contrl Unchecked 
Mesh Connection 

• Mesh Connection 
o Option   GGI 

• Intersection Control  Unchecked 
Interfaces S1_to_R1 Basic Settings 

• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Stator 
o Region List  S1_Outlet 

• Interface Side 2 
o Domain   Rotor 
o Region List  R1_Inlet 

• Interface Models 
o Option   General Connection 

• Frame Change/ Mixing Model 
o Option   Frozen Rotor 
o Rotational Offset  Unchecked 

• Pitch Change 
o Automatic 

Additional Interface Models 
• Mass and Momentum 
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o Option   Conservative  
   Interface Flux 

• Interface Model 
o Option   None 

• Conditional Connection Contrl Unchecked 
Mesh Connection 

• Mesh Connection 
o Option   GGI 

• Intersection Control  Unchecked 
Interfaces SideSymmetry_R1 Basic Settings 

• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Rotor 
o Region List  R1_Sym1 

• Interface Side 2 
o Domain   Rotor 
o Region List  R1_Sym2 

• Interface Models 
o Option   Rotational  

   Periodicity 
• Axis Definition 

o Option   Coordinate Axis 
o Rotational Axis  Global Z 

Mesh Connection 
• Mesh Connection 

o Option   Automatic 
• Intersection Control  Unchecked 

Interfaces SideSymmetry_S1 Basic Settings 
• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Stator 
o Region List  S1_Sym1 

• Interface Side 2 
o Domain   Stator 
o Region List  S1_Sym2 

• Interface Models 
o Option   Rotational  

   Periodicity 
• Axis Definition 

o Option   Coordinate Axis 
o Rotational Axis  Global Z 

Mesh Connection 
• Mesh Connection 

o Option   Automatic 
• Intersection Control  Unchecked 

Interfaces SideSymmetry_S2 Basic Settings 
• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Stator 
o Region List  S2_Sym1 

• Interface Side 2 
o Domain   Stator 
o Region List  S2_Sym2 



 70 

• Interface Models 
o Option   Rotational  

   Periodicity 
• Axis Definition 

o Option   Coordinate Axis 
o Rotational Axis  Global Z 

Mesh Connection 
• Mesh Connection 

o Option   Automatic 
• Intersection Control  Unchecked 

Solver Solution Units Basic Settings 
• Mass Units:   [kg] 
• Length Units:   [m] 
• Time Units:   [s] 
• Temperature Units  [K] 
• Angle Units:   CHECKED 

o Angle Units:  [rad] 
• Solid Angle Units:  CHECKED 

o Solid Angle Units: [sr] 
Solver Solver Control Basic Settings 

• Advection Scheme 
o Option:    High  

    Resolution 
• Convergence Control 

o Min. Iterations   1 
o Max. Iterations   100 
o Fluid Timescale Control 

 Timescale Control: Auto  
   Timescale 

 Length Scale Option Conservat. 
 Timescale Factor  1.0 
 Maximum Timescale unchecked 

• Convergence Criteria 
o Residual Type:   RMS 
o Residual Target:   1e-5 
o Conservation Target:  unchecked 

• Elapsed Wall Clock Time Control:  unchecked 
• Interrupt Control:    unchecked 

Equation Class Settings 
• Equation Class:   Continuity, Energy  

   Momentum 
• Continuity:  unchecked 

Advanced Options 
• Dynamic Model Control:   CHECKED 

o Hydro Control:   unchecked 
• Pressure Level Information:  unchecked 
• Body Forces:    unchecked 
• Interpolation Scheme:   unchecked 
• Temperature Damping:   unchecked 
• Velocity Pressure Coupling:  unchecked 

Compressibility Control:   unchecked 
Solver Output Control Results 

• Option:     Standard 
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• File Compression:   Default 
• Output Equation Residuals:  unchecked 
• Extra Output Variable List   unchecked 

Backup Results:     Blank 
Monitor 

• Monitor Objects:    Pressure 
     Ratio* 

*Pressure Ratio is defined in expressions  
Expressions Absolute Omega abs(200000 [rev min^-1]) 
Expressions Exit MassFlow massFlow()@REGION:S2_Outlet 
Expressions Inlet MassFlow massFlow()@REGION:S1_Inlet 
Expressions Inlet Pressure areaAve(Pressure)@S1_Inlet 
Expressions Power (tBladeRow * Absolute Omega / 1 [rad])*(-1) 
Expressions Pressure Ratio (101300 [Pa] /(101300 [Pa] +Inlet Pressure))-1 
Expressions tBladeRow torque_z()@Rotor Default 
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APPENDIX E SETUP FOR TRANSIENT 2D 

Analysis Type Basic Settings 
• External Solver Coupling 

o Option:     None 
• Analysis Type 

o Option:    Steady State 
Rotor Basic Settings 

• Location & Type 
o Location:    B272 
o Domain Type:    Fluid Domain 
o Coordinate Frame:   Coord 0 

• Fluid and Particle Definitions… 
o Fluid 1 

 Option:    Material Library 
 Material:   Air Ideal Gas 
 Morphology 

• Option:   Continuous Fluid 
 Minimum Volume Fraction: unchecked 

• Domain Models 
o Pressure 

 Reference Pressure:   1 [atm] 
o Buoyancy Model 

 Option:    Non Buoyant 
o Domain Motion 

 Option:    Rotating 
 Angular Velocity  200000 [rev min^-1] 

o Axis Definition   
 Option   Coordinate Axis 
 Rotation Axis  Global Z 
 Mesh Deformation:  None 

o Mesh Deformation 
 Option   None 

Fluid Models 
• Heat Transfer 

o Option     Total Energy 
o Incl. Viscous Work Term   Checked 

• Turbulence 
o Option     None (Laminar) 

• Combustion  
o Option     None 

• Thermal Radiation 
o Option     None 

• Electromagnetic Model    Unchecked 
Initialization 

• Domain Initialization 
o Frame Type    Rotating 
o Coord Frame    Unchecked 

• Initial Conditions 
o Velocity Type   Cylindrical 
o Cylindrical Velocity Components 

 Option    Automatic 
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o Velocity Scale    Unchecked 
• Static Pressure  

o Option     Automatic 
• Temperature  

o Option     Automatic 
Rotor Rotor Default Basic Settings 

• Boundary Type:    Wall 
o Location:   (automatically fills 

   out) 
o Coord Frame  Unchecked 
o Frame Type  Rotating 

Boundary Details 
• Mass and Momentum 

o Option   No Slip Wall 
o Wall Velocity  Unchecked 

• Heat Transfer 
o Option   Adiabatic 

Sources 
• Boundary Source:   Unchecked 

 
Rotor Rotor_Symmetry Basic Settings 

• Boundary Type:   Symmetry 
• Location:                              R1_Top, R1_Bottom 

Stator Basic Settings 
• Location & Type 

o Location:    B1706,B2045 
o Domain Type:    Fluid Domain 
o Coordinate Frame:   Coord 0 

• Fluid and Particle Definitions… 
o Fluid 1 

 Option:    Material Library 
 Material:   Air Ideal Gas 
 Morphology 

• Option:   Continuous Fluid 
 Minimum Volume Fraction: unchecked 

• Domain Models 
o Pressure 

 Reference Pressure:   1 [atm] 
o Buoyancy Model 

 Option:    Non Buoyant 
o Domain Motion 

 Option:    Stationary 
o Mesh Deformation 

 Option   None 
Fluid Models 

• Heat Transfer 
o Option     Total Energy 
o Incl. Viscous Work Term   Checked 

• Turbulence 
o Option     None (Laminar) 

• Combustion  
o Option     None 

• Thermal Radiation 
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o Option     None 
• Electromagnetic Model    Unchecked 

Initialization 
• Domain Initialization 

o Frame Type    Rotating 
o Coord Frame    Unchecked 

• Initial Conditions 
o Velocity Type   Cylindrical 
o Cylindrical Velocity Components 

 Option    Automatic 
o Velocity Scale    Unchecked 

• Static Pressure  
o Option     Automatic 

• Temperature  
o Option     Automatic 

Stator Stator Default Basic Settings 
• Boundary Type:    Wall 

o Location:   (automatically fills 
   out) 

o Coord Frame  Unchecked 
o Frame Type  Rotating 

Boundary Details 
• Mass and Momentum 

o Option   No Slip Wall 
o Wall Velocity  Unchecked 

• Heat Transfer 
o Option   Adiabatic 

Sources 
• Boundary Source:   Unchecked 

Stator Inlet Basic Settings 
• Boundary Type:   Wall 
• Location    S1_Inlet 
• Coord Frame:   Unchecked 

Boundary Details 
• Mass and Momentum 

o Option    No Slip Wall 
o Wall Velocity   Unchecked 

• Heat Transfer 
o Option    Adiabatic 

Sources 
• Boundary Source:   Unchecked  

Stator Outlet Basic Settings 
• Boundary Type:   Opening 
• Location    S2_Outlet 
• Coord Frame:   Unchecked 

Boundary Details 
• Flow Regime                                    Subsonic 
• Mass And Momentum 

o Option:    Entrainment 
o Relative Pressure: 0 [Pa] 

• Pressure Option   Static Pressure 
• Loss Coefficient   Unchecked 
• Heat Transfer 
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o Option:   Opening Temp 
o Opening Temp  288.15 [K] 

Sources 
• Boundary Source:  unchecked  

Stator S1_Symmetry Basic Settings 
• Boundary Type:   Symmetry 
• Location:                              S1_Top, S1_Bottom 

Stator S2_Symmetry Basic Settings 
• Boundary Type:   Symmetry 
• Location:                              S2_Top, S2_Bottom 

Interfaces R1_to_S2 Basic Settings 
• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Rotor 
o Region List  R1_Outlet 

• Interface Side 2 
o Domain   Stator 
o Region List  S2_Inlet 

• Interface Models 
o Option   General Connection 

• Frame Change/ Mixing Model 
o Option   Frozen Rotor 
o Rotational Offset  Unchecked 

• Pitch Change 
o Automatic 

Additional Interface Models 
• Mass and Momentum 

o Option   Conservative  
   Interface Flux 

• Interface Model 
o Option   None 

• Conditional Connection Contrl Unchecked 
Mesh Connection 

• Mesh Connection 
o Option   GGI 

• Intersection Control  Unchecked 
Interfaces S1_to_R1 Basic Settings 

• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Stator 
o Region List  S1_Outlet 

• Interface Side 2 
o Domain   Rotor 
o Region List  R1_Inlet 

• Interface Models 
o Option   General Connection 

• Frame Change/ Mixing Model 
o Option   Frozen Rotor 
o Rotational Offset  Unchecked 

• Pitch Change 
o Automatic 

Additional Interface Models 
• Mass and Momentum 
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o Option   Conservative  
   Interface Flux 

• Interface Model 
o Option   None 

• Conditional Connection Contrl Unchecked 
Mesh Connection 

• Mesh Connection 
o Option   GGI 

• Intersection Control  Unchecked 
Interfaces SideSymmetry_R1 Basic Settings 

• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Rotor 
o Region List  R1_Sym1 

• Interface Side 2 
o Domain   Rotor 
o Region List  R1_Sym2 

• Interface Models 
o Option   Rotational  

   Periodicity 
• Axis Definition 

o Option   Coordinate Axis 
o Rotational Axis  Global Z 

Mesh Connection 
• Mesh Connection 

o Option   Automatic 
• Intersection Control  Unchecked 

Interfaces SideSymmetry_S1 Basic Settings 
• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Stator 
o Region List  S1_Sym1 

• Interface Side 2 
o Domain   Stator 
o Region List  S1_Sym2 

• Interface Models 
o Option   Rotational  

   Periodicity 
• Axis Definition 

o Option   Coordinate Axis 
o Rotational Axis  Global Z 

Mesh Connection 
• Mesh Connection 

o Option   Automatic 
• Intersection Control  Unchecked 

Interfaces SideSymmetry_S2 Basic Settings 
• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Stator 
o Region List  S2_Sym1 

• Interface Side 2 
o Domain   Stator 
o Region List  S2_Sym2 
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• Interface Models 
o Option   Rotational  

   Periodicity 
• Axis Definition 

o Option   Coordinate Axis 
o Rotational Axis  Global Z 

Mesh Connection 
• Mesh Connection 

o Option   Automatic 
• Intersection Control  Unchecked 

Solver Solution Units Basic Settings 
• Mass Units:   [kg] 
• Length Units:   [m] 
• Time Units:   [s] 
• Temperature Units  [K] 
• Angle Units:   CHECKED 

o Angle Units:  [rad] 
• Solid Angle Units:  CHECKED 

o Solid Angle Units: [sr] 
Solver Solver Control Basic Settings 

• Advection Scheme 
o Option:    High  

    Resolution 
• Convergence Control 

o Min. Iterations   1 
o Max. Iterations   100 
o Fluid Timescale Control 

 Timescale Control: Auto  
   Timescale 

 Length Scale Option Conservat. 
 Timescale Factor  1.0 
 Maximum Timescale unchecked 

• Convergence Criteria 
o Residual Type:   RMS 
o Residual Target:   1e-5 
o Conservation Target:  unchecked 

• Elapsed Wall Clock Time Control:  unchecked 
• Interrupt Control:    unchecked 

Equation Class Settings 
• Equation Class:   Continuity, Energy  

   Momentum 
• Continuity:  unchecked 

Advanced Options 
• Dynamic Model Control:   CHECKED 

o Hydro Control:   unchecked 
• Pressure Level Information:  unchecked 
• Body Forces:    unchecked 
• Interpolation Scheme:   unchecked 
• Temperature Damping:   unchecked 
• Velocity Pressure Coupling:  unchecked 

Compressibility Control:   unchecked 
Solver Output Control Results 

• Option:     Standard 
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• File Compression:   Default 
• Output Equation Residuals:  unchecked 
• Extra Output Variable List   unchecked 

Backup Results:     Blank 
Monitor 

• Monitor Objects:    Pressure 
     Ratio* 

*Pressure Ratio is defined in expressions  
Expressions Absolute Omega abs(200000 [rev min^-1]) 
Expressions Exit MassFlow massFlow()@REGION:S2_Outlet 
Expressions Inlet MassFlow massFlow()@REGION:S1_Inlet 
Expressions Inlet Pressure areaAve(Pressure)@S1_Inlet 
Expressions Power (tBladeRow * Absolute Omega / 1 [rad])*(-1) 
Expressions Pressure Ratio (101300 [Pa] /(101300 [Pa] +Inlet Pressure))-1 
Expressions tBladeRow torque_z()@Rotor Default 
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APPENDIX F SETUP FOR STEADY STATE 3D 

Analysis Type Basic Settings 
• External Solver Coupling 

o Option:     None 
• Analysis Type 

o Option:    Steady State 
Rotor Basic Settings 

• Location & Type 
o Location:    B272 
o Domain Type:    Fluid Domain 
o Coordinate Frame:   Coord 0 

• Fluid and Particle Definitions… 
o Fluid 1 

 Option:    Material Library 
 Material:   Air Ideal Gas 
 Morphology 

• Option:   Continuous Fluid 
 Minimum Volume Fraction: unchecked 

• Domain Models 
o Pressure 

 Reference Pressure:   1 [atm] 
o Buoyancy Model 

 Option:    Non Buoyant 
o Domain Motion 

 Option:    Rotating 
 Angular Velocity  200000 [rev min^-1] 

o Axis Definition   
 Option   Coordinate Axis 
 Rotation Axis  Global Z 
 Mesh Deformation:  None 

o Mesh Deformation 
 Option   None 

Fluid Models 
• Heat Transfer 

o Option     Total Energy 
o Incl. Viscous Work Term   Checked 

• Turbulence 
o Option     None (Laminar) 

• Combustion  
o Option     None 

• Thermal Radiation 
o Option     None 

• Electromagnetic Model    Unchecked 
Initialization 

• Domain Initialization 
o Frame Type    Rotating 
o Coord Frame    Unchecked 

• Initial Conditions 
o Velocity Type   Cylindrical 
o Cylindrical Velocity Components 

 Option    Automatic 
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o Velocity Scale    Unchecked 
• Static Pressure  

o Option     Automatic 
• Temperature  

o Option     Automatic 
Rotor Rotor Default Basic Settings 

• Boundary Type:    Wall 
o Location:   (automatically fills 

   out) 
o Coord Frame  Unchecked 
o Frame Type  Rotating 

Boundary Details 
• Mass and Momentum 

o Option   No Slip Wall 
o Wall Velocity  Unchecked 

• Heat Transfer 
o Option   Adiabatic 

Sources 
• Boundary Source:   Unchecked 

 
Stator Basic Settings 

• Location & Type 
o Location:    B1706,B2045 
o Domain Type:    Fluid Domain 
o Coordinate Frame:   Coord 0 

• Fluid and Particle Definitions… 
o Fluid 1 

 Option:    Material Library 
 Material:   Air Ideal Gas 
 Morphology 

• Option:   Continuous Fluid 
 Minimum Volume Fraction: unchecked 

• Domain Models 
o Pressure 

 Reference Pressure:   1 [atm] 
o Buoyancy Model 

 Option:    Non Buoyant 
o Domain Motion 

 Option:    Stationary 
o Mesh Deformation 

 Option   None 
Fluid Models 

• Heat Transfer 
o Option     Total Energy 
o Incl. Viscous Work Term   Checked 

• Turbulence 
o Option     None (Laminar) 

• Combustion  
o Option     None 

• Thermal Radiation 
o Option     None 

• Electromagnetic Model    Unchecked 
Initialization 
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• Domain Initialization 
o Frame Type    Rotating 
o Coord Frame    Unchecked 

• Initial Conditions 
o Velocity Type   Cylindrical 
o Cylindrical Velocity Components 

 Option    Automatic 
o Velocity Scale    Unchecked 

• Static Pressure  
o Option     Automatic 

• Temperature  
o Option     Automatic 

Stator Stator Default Basic Settings 
• Boundary Type:    Wall 

o Location:   (automatically fills 
   out) 

o Coord Frame  Unchecked 
o Frame Type  Rotating 

Boundary Details 
• Mass and Momentum 

o Option   No Slip Wall 
o Wall Velocity  Unchecked 

• Heat Transfer 
o Option   Adiabatic 

Sources 
• Boundary Source:   Unchecked 

Stator Inlet Basic Settings 
• Boundary Type:   Wall 
• Location    S1_Inlet 
• Coord Frame:   Unchecked 

Boundary Details 
• Mass and Momentum 

o Option    No Slip Wall 
o Wall Velocity   Unchecked 

• Heat Transfer 
o Option    Adiabatic 

Sources 
• Boundary Source:   Unchecked  

Stator Outlet Basic Settings 
• Boundary Type:   Opening 
• Location    S2_Outlet 
• Coord Frame:   Unchecked 

Boundary Details 
• Flow Regime                                    Subsonic 
• Mass And Momentum 

o Option:    Entrainment 
o Relative Pressure: 0 [Pa] 

• Pressure Option   Static Pressure 
• Loss Coefficient   Unchecked 
• Heat Transfer 

o Option:   Opening Temp 
o Opening Temp  288.15 [K] 

Sources 
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• Boundary Source:  unchecked  
Interfaces R1_to_S2 Basic Settings 

• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Rotor 
o Region List  R1_Outlet 

• Interface Side 2 
o Domain   Stator 
o Region List  S2_Inlet 

• Interface Models 
o Option   General Connection 

• Frame Change/ Mixing Model 
o Option   Frozen Rotor 
o Rotational Offset  Unchecked 

• Pitch Change 
o Automatic 

Additional Interface Models 
• Mass and Momentum 

o Option   Conservative  
   Interface Flux 

• Interface Model 
o Option   None 

• Conditional Connection Contrl Unchecked 
Mesh Connection 

• Mesh Connection 
o Option   GGI 

• Intersection Control  Unchecked 
Interfaces S1_to_R1 Basic Settings 

• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Stator 
o Region List  S1_Outlet 

• Interface Side 2 
o Domain   Rotor 
o Region List  R1_Inlet 

• Interface Models 
o Option   General Connection 

• Frame Change/ Mixing Model 
o Option   Frozen Rotor 
o Rotational Offset  Unchecked 

• Pitch Change 
o Automatic 

Additional Interface Models 
• Mass and Momentum 

o Option   Conservative  
   Interface Flux 

• Interface Model 
o Option   None 

• Conditional Connection Contrl Unchecked 
Mesh Connection 

• Mesh Connection 
o Option   GGI 

• Intersection Control  Unchecked 
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Interfaces SideSymmetry_R1 Basic Settings 
• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Rotor 
o Region List  R1_Sym1 

• Interface Side 2 
o Domain   Rotor 
o Region List  R1_Sym2 

• Interface Models 
o Option   Rotational  

   Periodicity 
• Axis Definition 

o Option   Coordinate Axis 
o Rotational Axis  Global Z 

Mesh Connection 
• Mesh Connection 

o Option   Automatic 
• Intersection Control  Unchecked 

Interfaces SideSymmetry_S1 Basic Settings 
• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Stator 
o Region List  S1_Sym1 

• Interface Side 2 
o Domain   Stator 
o Region List  S1_Sym2 

• Interface Models 
o Option   Rotational  

   Periodicity 
• Axis Definition 

o Option   Coordinate Axis 
o Rotational Axis  Global Z 

Mesh Connection 
• Mesh Connection 

o Option   Automatic 
• Intersection Control  Unchecked 

Interfaces SideSymmetry_S2 Basic Settings 
• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Stator 
o Region List  S2_Sym1 

• Interface Side 2 
o Domain   Stator 
o Region List  S2_Sym2 

• Interface Models 
o Option   Rotational  

   Periodicity 
• Axis Definition 

o Option   Coordinate Axis 
o Rotational Axis  Global Z 

Mesh Connection 
• Mesh Connection 

o Option   Automatic 
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• Intersection Control  Unchecked 
Solver Solution Units Basic Settings 

• Mass Units:   [kg] 
• Length Units:   [m] 
• Time Units:   [s] 
• Temperature Units  [K] 
• Angle Units:   CHECKED 

o Angle Units:  [rad] 
• Solid Angle Units:  CHECKED 

o Solid Angle Units: [sr] 
Solver Solver Control Basic Settings 

• Advection Scheme 
o Option:    High  

    Resolution 
• Convergence Control 

o Min. Iterations   1 
o Max. Iterations   100 
o Fluid Timescale Control 

 Timescale Control: Auto  
   Timescale 

 Length Scale Option Conservat. 
 Timescale Factor  1.0 
 Maximum Timescale unchecked 

• Convergence Criteria 
o Residual Type:   RMS 
o Residual Target:   1e-5 
o Conservation Target:  unchecked 

• Elapsed Wall Clock Time Control:  unchecked 
• Interrupt Control:    unchecked 

Equation Class Settings 
• Equation Class:   Continuity, Energy  

   Momentum 
• Continuity:  unchecked 

Advanced Options 
• Dynamic Model Control:   CHECKED 

o Hydro Control:   unchecked 
• Pressure Level Information:  unchecked 
• Body Forces:    unchecked 
• Interpolation Scheme:   unchecked 
• Temperature Damping:   unchecked 
• Velocity Pressure Coupling:  unchecked 

Compressibility Control:   unchecked 
Solver Output Control Results 

• Option:     Standard 
• File Compression:   Default 
• Output Equation Residuals:  unchecked 
• Extra Output Variable List   unchecked 

Backup Results:     Blank 
Monitor 

• Monitor Objects:    Pressure 
     Ratio* 

*Pressure Ratio is defined in expressions  
Expressions Absolute Omega abs(200000 [rev min^-1]) 
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Expressions Exit MassFlow massFlow()@REGION:S2_Outlet 
Expressions Inlet MassFlow massFlow()@REGION:S1_Inlet 
Expressions Inlet Pressure areaAve(Pressure)@S1_Inlet 
Expressions Power (tBladeRow * Absolute Omega / 1 [rad])*(-1) 
Expressions Pressure Ratio (101300 [Pa] /(101300 [Pa] +Inlet Pressure))-1 
Expressions tBladeRow torque_z()@Rotor Default 
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APPENDIX G SETUP FOR TRANSIENT 3D 

Analysis Type Basic Settings 
• External Solver Coupling 

o Option:     None 
• Analysis Type 

o Option:    Steady State 
Rotor Basic Settings 

• Location & Type 
o Location:    B272 
o Domain Type:    Fluid Domain 
o Coordinate Frame:   Coord 0 

• Fluid and Particle Definitions… 
o Fluid 1 

 Option:    Material Library 
 Material:   Air Ideal Gas 
 Morphology 

• Option:   Continuous Fluid 
 Minimum Volume Fraction: unchecked 

• Domain Models 
o Pressure 

 Reference Pressure:   1 [atm] 
o Buoyancy Model 

 Option:    Non Buoyant 
o Domain Motion 

 Option:    Rotating 
 Angular Velocity  200000 [rev min^-1] 

o Axis Definition   
 Option   Coordinate Axis 
 Rotation Axis  Global Z 
 Mesh Deformation:  None 

o Mesh Deformation 
 Option   None 

Fluid Models 
• Heat Transfer 

o Option     Total Energy 
o Incl. Viscous Work Term   Checked 

• Turbulence 
o Option     None (Laminar) 

• Combustion  
o Option     None 

• Thermal Radiation 
o Option     None 

• Electromagnetic Model    Unchecked 
Initialization 

• Domain Initialization 
o Frame Type    Rotating 
o Coord Frame    Unchecked 

• Initial Conditions 
o Velocity Type   Cylindrical 
o Cylindrical Velocity Components 

 Option    Automatic 
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o Velocity Scale    Unchecked 
• Static Pressure  

o Option     Automatic 
• Temperature  

o Option     Automatic 
Rotor Rotor Default Basic Settings 

• Boundary Type:    Wall 
o Location:   (automatically fills 

   out) 
o Coord Frame  Unchecked 
o Frame Type  Rotating 

Boundary Details 
• Mass and Momentum 

o Option   No Slip Wall 
o Wall Velocity  Unchecked 

• Heat Transfer 
o Option   Adiabatic 

Sources 
• Boundary Source:   Unchecked 

 
Stator Basic Settings 

• Location & Type 
o Location:    B1706,B2045 
o Domain Type:    Fluid Domain 
o Coordinate Frame:   Coord 0 

• Fluid and Particle Definitions… 
o Fluid 1 

 Option:    Material Library 
 Material:   Air Ideal Gas 
 Morphology 

• Option:   Continuous Fluid 
 Minimum Volume Fraction: unchecked 

• Domain Models 
o Pressure 

 Reference Pressure:   1 [atm] 
o Buoyancy Model 

 Option:    Non Buoyant 
o Domain Motion 

 Option:    Stationary 
o Mesh Deformation 

 Option   None 
Fluid Models 

• Heat Transfer 
o Option     Total Energy 
o Incl. Viscous Work Term   Checked 

• Turbulence 
o Option     None (Laminar) 

• Combustion  
o Option     None 

• Thermal Radiation 
o Option     None 

• Electromagnetic Model    Unchecked 
Initialization 
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• Domain Initialization 
o Frame Type    Rotating 
o Coord Frame    Unchecked 

• Initial Conditions 
o Velocity Type   Cylindrical 
o Cylindrical Velocity Components 

 Option    Automatic 
o Velocity Scale    Unchecked 

• Static Pressure  
o Option     Automatic 

• Temperature  
o Option     Automatic 

Stator Stator Default Basic Settings 
• Boundary Type:    Wall 

o Location:   (automatically fills 
   out) 

o Coord Frame  Unchecked 
o Frame Type  Rotating 

Boundary Details 
• Mass and Momentum 

o Option   No Slip Wall 
o Wall Velocity  Unchecked 

• Heat Transfer 
o Option   Adiabatic 

Sources 
• Boundary Source:   Unchecked 

Stator Inlet Basic Settings 
• Boundary Type:   Wall 
• Location    S1_Inlet 
• Coord Frame:   Unchecked 

Boundary Details 
• Mass and Momentum 

o Option    No Slip Wall 
o Wall Velocity   Unchecked 

• Heat Transfer 
o Option    Adiabatic 

Sources 
• Boundary Source:   Unchecked  

Stator Outlet Basic Settings 
• Boundary Type:   Opening 
• Location    S2_Outlet 
• Coord Frame:   Unchecked 

Boundary Details 
• Flow Regime                                    Subsonic 
• Mass And Momentum 

o Option:    Entrainment 
o Relative Pressure: 0 [Pa] 

• Pressure Option   Static Pressure 
• Loss Coefficient   Unchecked 
• Heat Transfer 

o Option:   Opening Temp 
o Opening Temp  288.15 [K] 

Sources 
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• Boundary Source:  unchecked  
Interfaces R1_to_S2 Basic Settings 

• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Rotor 
o Region List  R1_Outlet 

• Interface Side 2 
o Domain   Stator 
o Region List  S2_Inlet 

• Interface Models 
o Option   General Connection 

• Frame Change/ Mixing Model 
o Option   Frozen Rotor 
o Rotational Offset  Unchecked 

• Pitch Change 
o Automatic 

Additional Interface Models 
• Mass and Momentum 

o Option   Conservative  
   Interface Flux 

• Interface Model 
o Option   None 

• Conditional Connection Contrl Unchecked 
Mesh Connection 

• Mesh Connection 
o Option   GGI 

• Intersection Control  Unchecked 
Interfaces S1_to_R1 Basic Settings 

• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Stator 
o Region List  S1_Outlet 

• Interface Side 2 
o Domain   Rotor 
o Region List  R1_Inlet 

• Interface Models 
o Option   General Connection 

• Frame Change/ Mixing Model 
o Option   Frozen Rotor 
o Rotational Offset  Unchecked 

• Pitch Change 
o Automatic 

Additional Interface Models 
• Mass and Momentum 

o Option   Conservative  
   Interface Flux 

• Interface Model 
o Option   None 

• Conditional Connection Contrl Unchecked 
Mesh Connection 

• Mesh Connection 
o Option   GGI 

• Intersection Control  Unchecked 
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Interfaces SideSymmetry_R1 Basic Settings 
• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Rotor 
o Region List  R1_Sym1 

• Interface Side 2 
o Domain   Rotor 
o Region List  R1_Sym2 

• Interface Models 
o Option   Rotational  

   Periodicity 
• Axis Definition 

o Option   Coordinate Axis 
o Rotational Axis  Global Z 

Mesh Connection 
• Mesh Connection 

o Option   Automatic 
• Intersection Control  Unchecked 

Interfaces SideSymmetry_S1 Basic Settings 
• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Stator 
o Region List  S1_Sym1 

• Interface Side 2 
o Domain   Stator 
o Region List  S1_Sym2 

• Interface Models 
o Option   Rotational  

   Periodicity 
• Axis Definition 

o Option   Coordinate Axis 
o Rotational Axis  Global Z 

Mesh Connection 
• Mesh Connection 

o Option   Automatic 
• Intersection Control  Unchecked 

Interfaces SideSymmetry_S2 Basic Settings 
• Interface Type   Fluid Flow 
• Interface Side 1 

o Domain    Stator 
o Region List  S2_Sym1 

• Interface Side 2 
o Domain   Stator 
o Region List  S2_Sym2 

• Interface Models 
o Option   Rotational  

   Periodicity 
• Axis Definition 

o Option   Coordinate Axis 
o Rotational Axis  Global Z 

Mesh Connection 
• Mesh Connection 

o Option   Automatic 
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• Intersection Control  Unchecked 
Solver Solution Units Basic Settings 

• Mass Units:   [kg] 
• Length Units:   [m] 
• Time Units:   [s] 
• Temperature Units  [K] 
• Angle Units:   CHECKED 

o Angle Units:  [rad] 
• Solid Angle Units:  CHECKED 

o Solid Angle Units: [sr] 
Solver Solver Control Basic Settings 

• Advection Scheme 
o Option:    High  

    Resolution 
• Convergence Control 

o Min. Iterations   1 
o Max. Iterations   100 
o Fluid Timescale Control 

 Timescale Control: Auto  
   Timescale 

 Length Scale Option Conservat. 
 Timescale Factor  1.0 
 Maximum Timescale unchecked 

• Convergence Criteria 
o Residual Type:   RMS 
o Residual Target:   1e-5 
o Conservation Target:  unchecked 

• Elapsed Wall Clock Time Control:  unchecked 
• Interrupt Control:    unchecked 

Equation Class Settings 
• Equation Class:   Continuity, Energy  

   Momentum 
• Continuity:  unchecked 

Advanced Options 
• Dynamic Model Control:   CHECKED 

o Hydro Control:   unchecked 
• Pressure Level Information:  unchecked 
• Body Forces:    unchecked 
• Interpolation Scheme:   unchecked 
• Temperature Damping:   unchecked 
• Velocity Pressure Coupling:  unchecked 

Compressibility Control:   unchecked 
Solver Output Control Results 

• Option:     Standard 
• File Compression:   Default 
• Output Equation Residuals:  unchecked 
• Extra Output Variable List   unchecked 

Backup Results:     Blank 
Monitor 

• Monitor Objects:    Pressure 
     Ratio* 

*Pressure Ratio is defined in expressions  
Expressions Absolute Omega abs(200000 [rev min^-1]) 



 95 

 

 

Expressions Exit MassFlow massFlow()@REGION:S2_Outlet 
Expressions Inlet MassFlow massFlow()@REGION:S1_Inlet 
Expressions Inlet Pressure areaAve(Pressure)@S1_Inlet 
Expressions Power (tBladeRow * Absolute Omega / 1 [rad])*(-1) 
Expressions Pressure Ratio (101300 [Pa] /(101300 [Pa] +Inlet Pressure))-1 
Expressions tBladeRow torque_z()@Rotor Default 
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